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Abstract Black root rot (BRR), incited by the soilborne
pathogen Thielaviopsis basicola has the potential to cause
signiWcant economic loss in cotton (Gossypium spp.) pro-
duction. Cultivated tetraploids of cotton (G. hirsutum and
G. barbadense) are susceptible although resistant types
have been identiWed in a possible tetraploid progenitor,
G. herbaceum. Genetic mapping was used to detect the
chromosomal locations of quantitative trait loci (QTL) that
confer resistance to the BRR pathogen. A population of F2

individuals (G. herbaceum £ G. arboreum) and F2:3 prog-
eny families were examined. Phenotypic variation between
resistant and susceptible reactions could be explained partly
by three QTL. The BRR5.1, BRR9.1, and BRR13.1 QTL
each explained 19.1, 10.3 and 8.5% of the total phenotypic
variation, respectively. The combination of all three in a
single genetic model explained 32.7% of the phenotypic
variation. Comparative analysis was conducted on signiW-
cant QTL regions to deduce the cotton–Arabidopsis syn-
teny relationship and examine the correspondence between
BRR QTL and Arabidopsis pathogen defense genes.
Totally 20 Arabidopsis synteny segments corresponded
within one of three BRR QTL regions. Each synteny

segment contains many potential Arabidopsis candidate
genes. A total of 624 Arabidopsis genes, including 22 path-
ogen defense and 36 stress response genes, could be placed
within the syntenic regions corresponding to the BRR QTL.
Fine mapping is needed to delineate each underlying BRR
R-gene and possible Arabidopsis orthologs. Research and
breeding activities to examine each QTL and underlying
genes in Upland cotton (G. hirsutum) are ongoing.

Introduction

Tetraploid cotton (G. hirsutum and G. barbadense) is the
number one natural Wber resource for the textile industry,
and is an important commodity to the world economy. Dis-
eases can cause substantial yield loss and reduced Wber
quality in all cotton producing countries of the world. In the
USA alone, estimated annual yield loss due to diseases
from 1995 to 2005 was 2,668,262 bales (Blasingame 2006).
Considering that the average value of the USA cotton crop
was about $7.7 billion ($0.32 per kg) per year, disease
accounted for an $897 million annual loss in revenue.
Among various cotton diseases, black root rot (BRR)
caused by the soilborne fungus, Thielaviopsis basicola
(Berk. & Broome Ferris, syn. Chalara elegans Nag Raj &
Kendrick), is a threat to cotton production (Rothrock 1997;
Wheeler et al. 2000). Primary symptoms include necrosis
of the tap and lateral roots that result in reduced plant vigor
(stunting) and delayed maturity (Minton and Garber 1983).
Seedlings with extensive root damage may perish (Walker
et al. 2000). The damage is particularly severe when there
is an extended period of cool weather in the spring
(Rothrock 1992), or if the root-knot nematode,
Meloidogyne incognita is also present (Walker et al. 1998).
Thielaviopsis basicola and M. incognita interaction results
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in substantial damage to the root system (Walker et al.
1999, 2000). Chemical control with triadimenol or myclob-
utanil has been insuYcient to manage BRR (Kaufman et al.
1998).

BRR resistant genotypes have not been available for the
breeding of superior germplasm (Wheeler et al. 1999). This
is attributed to a lack of resistance in cultivated G. hirsutum
(Upland) and G. barbadense. Traits for which highly resis-
tant germplasm is available, such as bacterial blight caused
by Xanthomonas campestris pv. malvaceraum, are
improved readily by breeding of resistant cultivars to
reduce or eliminate disease losses (Bird 1986). Wheeler
et al. (1999) examined approximately 1,000 tetraploid and
diploid accessions, of which an A-genome diploid cotton
species, G. arboreum (var. PI 1415), had reduced root
necrosis when challenged with 337–550 chlamydospores/
cm3 soil from T. basicola compared with a susceptible
check. However, PI 1415 had signiWcantly higher root
necrosis ratings when challenged with 500–1,000 chlamy-
dospores/cm3 soil compared with G. herbaceum var. “A20”
(PI 408778) (Wheeler and Gannaway 2007). No other cot-
ton germplasm has been identiWed with better resistance
than A20 (Wheeler and Gannaway 2007). The lack of BRR
resistance in cultivated tetraploid cotton dictates a need to
identify resistance (R) genes that could be deployed in elite
Upland cotton cultivars.

Tetraploid cotton (2n = 4x = 52) arose some 1–2 million
years ago through the hybridization of an Old World taxon
of the A-genome cytogenetic group, related to the species
G. arboreum and G. herbaceum (2n = 2x = 26), with a
taxon of the D-genome group related to the New World
species G. raimondii or G. gossypioides (2n = 2x = 26)
(Beasley 1940; Wendel et al. 1992, 1995). During the
domestication and improvement of Upland cotton, inten-
sive selection for agronomic and quality traits led to a
narrowing of the gene pool. The utilization of tertiary
germplasm sources to mitigate the consequences of this
narrowing of the gene pool was demonstrated in the 1940 s
when genes conferring resistance to X. campestris pv.
malvacearum, were successfully transferred from G. arbor-
eum into tetraploid cotton (Knight 1948, 1955). These
R-genes historically have been an important source of
resistance to bacterial blight. A detailed examination of a
trait’s heredity using molecular genetics may lead to a
molecular breeding strategy to exploit underrepresented
germplasm resources and ancient gene complexes and
reveal knowledge about cotton evolution (Jiang et al. 1998;
Wright et al. 1998; Brubaker et al. 1999; Abdalla et al.
2001; Rong et al. 2004, 2005; Desai et al. 2006).

Cotton has several interesting evolutionary features that
include the divergence of R-genes through the radiation of
species, genetic bottleneck events such as polyploidy, and
the domestication of a small subset of Gossypium species.

The implications of these events for host–pathogen interac-
tions are of interest. Analysis of the subgenomic (At vs. Dt)
distribution of genes conferring resistance to bacterial
blight in tetraploid AD-genome cottons provided informa-
tion on the impact of allopolyploid formation on host–path-
ogen interactions (Wright et al. 1998). Among seven
resistance genes derived from tetraploid cottons, six (86%)
mapped to D-subgenome chromosomes. This suggests that
the D-subgenome of tetraploid cotton has a higher propen-
sity to give rise to new R-gene alleles than the A-subge-
nome, and may indicate that polyploid formation oVers
novel avenues for phenotypic response to selection. How-
ever, the divergence of R-gene alleles does not always
parallel that of speciation. As a result, alleles (allelic
frequency) can be lost or Wxed in descendant populations
(species). The examination of R-genes alleles believed lost
during speciation events may help clarify the host–patho-
gen relationship in descendant species. To examine the evo-
lution/divergence of R-genes in Gossypium, research that
examines the genetic control of cotton disease resistance
may beneWt from Arabidopsis genetic resources and knowl-
edge. Gossypium and Arabidopsis are thought to have
shared common ancestry about 83–86 MYA (Benton
1993), and cotton may be the best crop outside of the
Brassicales in which to employ translational genomics
from Arabidopsis (Rong et al. 2007).

The present research was designed to examine the inher-
itance of resistance to T. basicola in the progenitor
A-genome diploid cotton using molecular markers to iden-
tify QTL that explain the phenotypic variation of resistant
and susceptible disease reactions.

Materials and methods

Population development and phenotyping of the mapping 
population

A population segregating for resistance to T. basicola was
created by crossing the highly resistant G. herbaceum var.
A20 (hereafter GH) parent (Wheeler and Gannaway 2007)
with the partially resistant G. arboreum var. PI 1415 (here-
after GA) parent (Wheeler et al. 1999). Progeny (F2) were
produced from self-fertilized F1 plants to maintain a strict
control of purity. Resistant and susceptible disease reac-
tions were determined for 129 F2 individuals and the F2:3

derived families. BRR phenotypes were assessed based on
the following method. The fungus was grown on carrot
agar for at least 6 weeks, the chlamydospores were washed
from the plates into water, blended for 11 s, and poured
through a 230-�m pore-sized sieve over a 37-�m pore-sized
sieve. The contents from the smaller pored sieve were
washed with tap water, stirred for several hours, quantiWed
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with a hemacytometer and adjusted to 40,000–
50,000 chlamydospores ml¡1. A measure of 2 ml of the
spore solution were added to 100 cm3 soil (77% sand, 9%
silt, and 14% clay), and hand mixed for 1 min. The inocu-
lated soil (800–1,000 spores/cm3 soil) was added to a
115-cm3 container (model RLC7, Stuewe & Sons, Inc.,
Corvallis, OR) and planted with a single seed. The 129 F2

individuals were placed in a growth chamber at 19 § 3°C
in a completely randomized design which contained the
resistant (GH) and susceptible (GA) parents. At »25 days
after planting, the soil was carefully washed from the roots.
Disease ratings (0–100%) were assessed visually based on
the percentage of necrotic root tissue. A 50% disease rating
denotes that necrosis was observed on half the total root
area. After visual assessment, each F2 plant was then care-
fully transplanted and grown to maturity. The seed from
each plant (F2:3) was harvested and the progeny tested again
to obtain an improved disease rating. A randomized com-
plete block design with 25 replications was used to assess
resistant and susceptible disease reaction of the progeny.
Each replication contained a single individual from each
F2:3 family and the GA and GH parents.

The average (mean) disease score of each F2:3 family
was calculated and used as a second phenotypic data set. A
third data set (F2-adjusted) was created to oVset possible
disease escapes based on single F2 plant phenotypes. This
adjusted data set was based on the following modiWcation
of the F2 data set. The diVerence (�) between F2 and F2:3

disease reactions (measures) were calculated and when
� ¸ 30%, F2 phenotypes were adjusted to reXect the higher
(more susceptible) disease score. In no case did this devia-
tion reXect an F2:3 phenotype less susceptible (� ¸ 30%)
than observed in the F2. All three data sets were used in the
QTL analysis.

SSR marker genotypes

Genomic DNA of the parental and F2 individuals was iso-
lated from young leaf tissue using a CTAB based method
(Paterson et al. 1993). DNA quantity was measured using
the NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE USA) and adjusted to a
working concentration of 20 ng/�l. DNA integrity of each
sample was checked on a 0.8% agarose gel against Lambda
DNA/HindIII Markers. Parental genotypes of 437 SSR loci
were determined, of which 157 were polymorphic and
selected to genotype the entire mapping population. These
SSRs include BNL, CIR, CMS, JESPR, MGHES, NAU
and TM, which have been described in detail (Reddy et al.
2001; Nguyen et al. 2004; Han et al. 2004; Qureshi et al.
2004). Polymerase chain reactions (PCR) were performed
in a 25 �l reaction volume that contained 50 ng template
DNA, 1 £ PCR buVer (10 mM Tris–HCl, 50 mM KCl, pH

8.3), 1% PVP-10, 1 mg/ml BSA, 0.1 mM dNTPs, 0.4 �M
of each forward and reverse primer, 1.5–3.0 mM MgCl2

(primer dependent), and 0.05 U/�l Taq polymerase. Each
reaction was initially denatured at 94°C for 5 min, followed
by 40 cycles of 94°C for 45 s, 51–61°C (optimized for indi-
vidual primer pair) for 45 s, and 72°C for 2 min, and a Wnal
extension at 72°C for 7 min using an eppendorf Mastercy-
cler epgradient (Eppendorf AG. Hamburg, Germany). SSR
fragments were resolved on 4% metaphor agarose gels
(Cambrex, Bio Science Rockland, Inc. Rockland, ME
USA) or 5–7% non-denaturing polyacrylamide gels (Omni-
pur Acrylamide:Bis Solution 19:1 DMD Chemicals Inc.
Gibbstown, NJ. USA). All gels were stained with ethidium
bromide and recorded by using AlphaImager® HP (Alpha
Innotech, San Leandro, CA USA). Polymorphic fragments
were scored manually as dominant or co-dominant loci.

Linkage and QTL analysis

A linkage map was constructed from the 157 polymorphic
loci using MAPMAKER/EXP 3.0 (Lander et al. 1987). A
LOD score of 3.0 and recombination fraction of 0.4
(Kosambi mapping function) were used as the threshold
criteria for linkage (Kosambi 1944). The colinearity of each
linkage group was compared to a diploid map (Desai et al.
2006) and the tetraploid maps of Han et al. (2004), Nguyen
et al. (2004) and Rong et al. (2004) to assist in the assign-
ment of each linkage group. Quantitative trait loci (QTL)
were identiWed by composite interval mapping using
Windows QTL Cartographer 2.5 (Wang et al. 2007). The
position of each QTL was inferred if the LR score exceeded
a threshhold calculated from 1,000 permutation runs. Alle-
lic eVects, and the percentage of phenotypic variance (PV)
explained by each QTL, were calculated at the likelihood
peak.

Comparative analysis of BRR QTL

Comparative analysis was conducted on signiWcant QTL
regions to deduce the cotton–Arabidopsis synteny relation-
ship and examine the correspondence between BRR QTL
and Arabidopsis pathogen defense genes. Each QTL region
was aligned with the corresponding cotton consensus map
(Rong et al. 2005; http://chibba.agtec.uga.edu/cgi-bin/cmap/
viewer) based on conserved marker loci to locate BRR QTL
on the consensus map. Markers that Xanked the 99% conW-
dence interval of each QTL were used in this step. Consen-
sus fragments were subjected to both Fast IdentiWcation of
Segmental Homologs (FISH) (Calabrese et al. 2003) and
CrimeStatII (Levine 2002) software analysis to identify
putatively duplicated genomic regions with the hypothetical
ancestral cotton, as well as putatively corresponding regions
between cotton and Arabidopsis (Rong et al. 2005). FISH
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preprocesses the matched locus data between two genomes
to enforce symmetry and remove noise from the data set,
and then identiWes sets of neighbors. The CrimeStatII
(Levine 2002) software was initially developed for the anal-
ysis of crime-occurrence data, the package performs mea-
surements of central tendency, spatial autocorrelation, and
hot-spot analysis that can be applied to any spatial data set.
This package has proven to be a powerful tool for assessing
spatial patterns in genomic data sets (Rong et al. 2005).

Results

Phenotypic variation for Thielaviopsis reactions

Individual plant (F2) reactions to T. basicola infestation
were distributed continuously from resistant to susceptible
(with a mean of 25.0% and standard deviation of 21.9%)
but skewed toward disease resistance (Fig. 1a). The par-
tially resistant G. arboreum parent (susceptible at concen-
trations above 500 spores/cm3 soil) had an average disease
rating of 57% compared to less than 5% in the highly-resis-
tant G. herbaceum parent. The few disease lesions observed
on the GH parent were a series of small infection sites
rather than a concentrated area of necrosis.

In the evaluation of F2:3 families, root necrosis values Wt
a normal distribution, with mean of 46.5% and standard
deviation of 33.7% (Fig. 1b). Heritability (H2), estimated
using the variance of the parental and F2:3 disease scores,
was 36.5%. The mean value of each F2:3 family was used in
the QTL analysis.

The F2-adjusted data set was created to resolve potential
susceptible escapes in the F2 data (Fig. 1c). The result was a
distribution less skewed toward resistance with a mean of
40.2% and standard deviation of 24.8%.

GH £ GA genetic map

A total of 157 polymorphic SSR markers were used to con-
struct a map of the GH £ GA population. With nine SSR

markers unlinked to any groups, the map consisted of 12 link-
age groups (LGs) including 148 SSR markers with a com-
bined total genetic distance of 1,216 cM. The genomes of
G. arboreum and G. herbaceum diVer by a single reciprocal
translocation (Menzel and Brown 1954). This chromosomal
diVerence has been shown to cause pseudolinkage between
markers near the interchange breakpoint of the chromosomes
involved (Brubaker et al. 1999; Desai et al. 2006). Conse-
quently, the map contains the 12 LGs that represent the collin-
ear chromosomes (LG.A1, 3, 4, 6, 8, 9, 10, 12, 13, 14, 16) and
a single linkage group (LG.A5) that has been implicated in the
A genome translocation. This observation is consistant with
two previous studies (Brubaker et al. 1999; Desai et al. 2006).
The 148 SSR loci have an average spacing of 8.27 cM and
ample colinearity (3–13 loci/linkage group) with one of
several tetraploid maps to determine the orthologous LGs of
A and At (tetraploid A-subgenome) (Nguyen et al. 2004;
Rong et al. 2004; Rong et al. 2005; Desai et al. 2006). The lin-
ear order of 72 common SSR loci generally agreed with the
published cotton maps. A single change in order was noticed
on LG.A1, 5, 6, and 14 and two order changes were found on
LG.A3, 10, and 13 (Fig. 2). Chromosome recombination
length varies from 16.9 to 193.2 cM. The total recombina-
tional length (1,216 cM) of this map is similar to the
A-genome map (1,147 cM) reported by Desai et al. (2006).

QTL conferring BBR resistance

The chromosomal locations of three QTL (BRR5.1, BRR9.1,
and BRR13.1) associated with the resistance phenotype,
based on F2, F2:3, and F2-adjusted measures of disease reac-
tion, are presented in Table 1 and Fig. 3. A region on LG.A5
(BRR5.1) explained 5.8–19.1% (LOD 2.74–5.75) of the phe-
notypic variation in all three data sets (Table 1, Fig. 3). In
each case, a likelihood peak was observed in the interval
between markers BNL1693 and NAU1072. The GH allele
improved resistance in each data set. Linkage Group 9 con-
tained a second QTL (BRR9.1) that explained 8.2–10.3%
(LOD 2.86–3.94) of the phenotypic variation in the
F2-adjusted and F2:3 data sets (Table 1, Fig. 3). The likeli-

Fig. 1 Frequency distribution of percentage root necrosis in the
G. herbaceum £ G. arboreum population. a F2 disease reactions, b
Average F2:3 disease reactions, and c F2-adjusted disease score. The

triangle and circle represent mean disease scores for the G. herbaceum
and G. arboreum parents, respectively
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hood peak for each mapped within the interval delineated by
markers BNL2690 and NAU0921. The GH allele increased
resistance to T. basicola. A third QTL (BRR13.1), explained
8.5% of phenotypic variation among the F2:3 families
(Table 1, Fig. 3). The interval between markers BNL3442
and BNL1034, on LG.A13, contained the likelihood peak
(LOD 3.02). The GH allele contributed to the increased
BRR resistance (Table 1). The three QTL collectively
explained 32.7% of the phenotypic variation in reaction to
T. basicola among F2:3 families.

Comparative analysis of BRR QTL

The three BRR QTL were projected onto the cotton consen-
sus map, which was inferred to resemble the DNA marker
arrangement of the hypothetical ancestor of the two subge-
nomes of tetraploid cotton (Rong et al. 2005). Totally 20
Arabidopsis synteny segments corresponded to one of the
three BRR QTL regions (Table 2). Cotton–Arabidopsis
synteny within the BRR5.1 QTL was deWned by three FISH

(DS08.76, D03.75, and D10.17) and three CrimeStatII
(D03.98, D05.99, and D05.100) segments (Fig. 4). Eight
Arabidopsis segements (DS01.260, DS02.262, D05.261,
D11.263, D14.264, D14.39, D14.171, and D23.170) with
inferred synteny with BRR9.1 were identiWed. The BRR13.1
QTL corresponding regions in Arabidopsis were delineated
by six segments (DS05.166, DS02.34, D15.164, DS02.69,
D03.143, and D12.68). The gene ontology of 624 Arabid-
opsis genes located in syntenic regions revealed 22 patho-
gen defense and 36 stress response genes (Table 2).

Discussion

Congruence among F2, F2:3, and F2-adjusted mapping data

There was general agreement among the three data sets
with regard to the detection of QTL inferred from statistical
analysis. The BRR5.1 QTL was detected in all three data
sets (F2, F2:3, and F2-adjusted) with the likelihood peak

Fig. 2 Colinearity of the 
G. herbaceum £ G. arboreum 
linkage map with the Nguyen 
et al. 2004 tetraploid map (N)

Table 1 Biometrical parameters of individual QTL conferring resistance to black root rot (BRR) of cotton

a Markers Xanking the QTL likelihood peak
b Position of the QTL likelihood peak (centi-Morgan from top)
c Biometrical parameters were calculated using dominance and recessiveness to refer to the behavior of the G. herbaceum alleles

Data set QTL Locus Intervala Positionb LOD % Var Mode of QTL actionc

a d d/a

F2 BRR5.1 LG.A5 BNL1693–NAU1072 6.01 2.74 5.8 ¡8.86 ¡0.80 0.09

F2:3 BRR5.1 LG.A5 BNL1693–NAU1072 5.01 5.75 19.1 ¡15.14 2.18 ¡0.14

F2-adjusted BRR5.1 LG.A5 BNL1693–NAU1072 6.11 3.93 7.2 ¡11.00 ¡2.44 0.22

F2:3 BRR9.1 LG.A9 BNL2690–NAU0921 2.01 2.86 10.3 ¡9.83 1.56 ¡0.16

F2-adjusted BRR9.1 LG.A9 BNL2690–NAU0921 3.01 3.94 8.2 ¡10.63 ¡3.36 0.32

F2:3 BRR13.1 LG.A13 BNL3442–BNL1034 2.01 3.02 8.5 ¡9.08 11.15 ¡1.23
123
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delineated by the same markers. The BRR9.1 QTL detected
in two (F2:3 and F2-adjusted) of three data sets was also
delineated by a common set of marker loci. These results
suggest that the relative position of a QTL is not altered
among the datasets but the power of detecting QTL is
improved when phenotypes are replicated. This observation
is evident by the higher LOD score, smaller likelihood
interval, and greater phenotypic variation explained in the
F2:3 dataset. This observation is consistent with QTL map-
ping of replicated phenotypic data (Zhang and Xu 2004).

The identiWed QTL on LG.A5, 9 and 13 indicated the
presence of at least three genes conditioning reactions to
T. basicola. For each of the three QTL, as expected, the GH
alleles contributed the increased resistance. It is possible
that additional QTL remain undetected; however, the three
QTL model explained almost all (32.7%) of the genetic
variability estimated by broad-sense heritability (36.5%).
This suggests that the remaining non-genetic variation
(63.5%) probably does not reXect undetected QTL.

Disease escapes

In the assessment of individual F2 plants it was clear that
individual plant disease ratings were not necessarily
accurate and that some susceptible individuals were rated
similarly to resistant types (i.e., escapes). However, a
common QTL (BRR5.1) with the largest phenotypic
eVect was identiWed in both F2 and F2:3 data sets, indicat-
ing the utility of F2 data in this study. Assessing the dis-
ease reactions of each F2:3 family substantially improved
the reliability of the QTL analysis, identifying two QTL
that could not be resolved in F2 analysis alone. This is

evident by the congruence among BRR5.1 mapping
results and the two additional QTL detected in the F2:3

dataset (Figs. 1, 3).

Colinearity of resistance QTL

Defense response genes tend to cluster in plant genomes
(PXieger et al. 2001; Monosi et al. 2004). Although a
small number of QTL or diagnostic markers associated
with disease resistance have been mapped in cotton,
BRR9.1 appears to map within a region that is homoeolo-
gus to a bacterial blight resistance QTL (Qb6c) on tetra-
ploid Chromosome 20 (formerly LGD04) (Wright et al.
1998) (Fig. 5a). Although LG.A9 and Chromosomes 20
are homoeologous, it is not clear whether or not the
BRR9.1 and Qb6c QTL map to corresponding locations.
Both map within 10 cM of the homoeologous marker
pAR09D03. Additional DNA markers will be needed to
better delineate the comparative organization of these two
chromosomes in order to determine whether the underlin-
ing QTL are truly homoeologous. A region on Chromo-
some 11 (LGA03) has been shown to confer resistance to
Verticillium wilt (Verticillium dahliae Kleb) (Bolek et al.
2005; Wang et al. 2006b). More recently, a molecular
marker and QTL associated with root knot nematode
resistance (rkn1 and Mi-C11) also were detected on
LGA03 (Wang et al. 2006a; Shen et al. 2006). The colin-
earity of these genes/QTL was compared with the ortholo-
gous A-genome region of LG.A13. The BRR13.1 QTL
mapped at the opposite ends of the linkage group
(Fig. 5b). It is possible that these BRR QTL are located
coincidentally with other known resistance loci in the

Fig. 3 Chromosomal location 
of QTL conferring resistance to 
Thielaviopsis basicola. Bars 
along the linkage groups indi-
cate 90% (1-LOD) likelihood 
intervals for the QTL, and whis-
kers indicate 99% (2-LOD) like-
lihood intervals. Marker names 
and genetic distances (in centi-
Morgan) are shown at the right 
and left of each linkage group
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Table 2 Pathogen defence and 
stress response genes on the Ara-
bidopsis syntenty segments

QTL Arabidopsis synteny segmentsa Arabidopsis locusb Gene function

BRR5.1 DS08.76 (91) At3g47600 Response to stress

At3g47830 Response to stress

At3g47950 Response to stress

At3g48030 Response to stress

At3g48090 Defense

At3g48425 Response to stress

D03.75 (2)

D10.17 (47) At2g21050 Defense

At2g21110 Defense

At4g38580 Response to stress

At4g38620 Response to stress

D05.100 (83) At1g20440 Response to stress

At1g20450 Response to stress

At1g20510 Response to stress

At1g20620 Response to stress

At1g76670 Defense

At1g76680 Response to stress

At1g76690 Response to stress

At1g76930 Response to stress

At1g77000 Response to stress

At1g77100 Response to stress

At1g77120 Response to stress

D05.99 (26) At1g22900 Defense

At1g13010 Response to stress

At1g23120 Defense

At1g23130 Defense

D03.98 (37) At1g09740 Response to stress

At1g09760 Response to stress

At1g09770 Defense

At1g09780 Response to stress

At1g58170 Defense

At1g58200 Response to stress

BRR9.1 DS01.260 (14) At1g04400 Response to stress

DS02.262 (6)

D05.261 (2)

D11.263 (3) At2g38750 Response to stress

D14.264 (3)

D14.39 (80) At3g11170 Response to stress

At3g11410 Response to stress

At3g11480 Defense

At3g11650 Defense

At3g11660 Defense

At5g06150 Response to stress

At5g06320 Defense

D14.171 (4)

D23.170 (109) At5g63980 Response to stress

At5g64100 Response to stress

At5g64110 Response to stress
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same chromosome. BRR and other resistance gene func-
tions will need to be further investigated to determine
whether they coincide and reveal more information on
cotton R-gene evolution.

Comparative analysis

Comparative analysis linked to synteny-based informa-
tion revealed several regions of correspondence between
BRR QTL and twenty Arabidopsis synteny segments.
This is an important benchmark to identify candidate
genes using Arabidopsis genetic resources. The inferred
position of 624 Arabidopsis genes can be placed within
BRR QTL regions, which include 22 pathogen defense
and 36 stress response genes. This synteny based compar-
ison may provide clues regarding possible cotton defense
responses genes. However, Wne-mapping is needed to
validate that the underlying BRR R-gene(s) do map
within an Arabidopsis syntenic region. This will also
condense the potential list of canadidate genes to a man-
ageable number for analysis.

Resistance mechanism

The mechanism that confers resistance to BRR in cotton
has not been intensively examined. In tobacco (Nicotiana
debneyi), BRR resistance is controlled by a single dominant
gene (Clayton 1969). This R-gene reduces lesion size, num-
ber, and secondary inoculum production of T. basicola
(Hood and Shew 1996). The reduced root necrosis in the

GH and other resistant progeny may resemble the resistant
response in tobacco, though conidia production was not
evaluated. Further characterization of the resistance mecha-
nism will require a better understanding of the fungus-host
coexistance that leads to disease and resistant reactions. By
studying the function of each gene(s) underpinning each
QTL(s) will ultimately lead to a better understanding of the
resistance mechanism.

Gene deployment (breeding)

The BRR5.1, BRR9.1 and BRR13.1 QTL provide a novel
source of resistance that could be used to improve culti-
vated cotton. While tetraploid cotton is often reproductively
incompatible with diploid cotton (Beasley 1942), the trans-
fer and deployment of R-genes was accomplished success-
fully (Knight 1948). Knight successfully transferred
bacterial blight resistance genes from diploid G. arboreum
into tetraploid cotton by creating a synthetic tetraploid fol-
lowed by successive back crossing to the tetraploid parent
(Knight 1948, 1955). These R-genes historically have been
a very important source of resistance to the most virulent
bacterial blight causing races, including Race 18 (Bird
1982; Wright et al. 1998).

Cotton breeding is rapidly shifting from traditional
phenotypic selection to genetic technologies that enable
the direct selection and examination of genes or alleles.
DNA markers that detect BRR5.1, BRR9.1 and BRR13.1
will aid in the introgression of BRR resistance by
improving selection eYciency and shortening the intro-

Table 2 continued QTL Arabidopsis synteny segmentsa Arabidopsis locusb Gene function

At5g64120 Defense

At5g64250 Defense

At5g64290 Defense

At5g64630 Response to stress

At5g64750 Response to stress

At5g64840 Defense

At5g64900 Defense

At5g64930 Defense

At5g64960 Defense

BRR13.1 DS05.166 (11) At3g48900 Response to stress

DS02.34 (3)

D15.164 (2) At3g23830 Response to stress

DS02.69 (3)

D03.143 (29) At1g12110 Response to stress

At1g12210 Defense

At1g12220 Defense

At1g12270 Response to stress

D12.68 (75)

a Parentheses indicate the total 
number of Arabidopsis gene on 
each segment
b Arabidopsis locus tag ID
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gression time-line. The implications of this shift for
breeding and using novel germplasm sources have
recently been realized. The development of resistance to
reniform nematodes (Rotylenchulus reniformis) from
F-genome diploid G. longicalyx (Robinson et al. 2007)
used a strategy that merged new and traditional technolo-
gies to accelerate the discovery and transfer of resistance

into elite cotton. Concurrently, Wne-mapping will better
delineate each QTL region and eventually lead to the
physical isolation and cloning of each R-gene sequence.
The direct transformation of isolated R-gene(s) will pro-
vide an alternative strategy for the development of resis-
tant Upland cotton. Once transferred, via transformation
or conventional breeding, it is important to assess the

Fig. 4 A CMap display showing the inferred Arabidopsis syntenic re-
gions (D03.75, DS08.76, and D10.17; FISH analysis) to BRR5.1 on
cotton consensus chromosome C02 (from 55 to 85 cM). Solid lines link
putative orthologs between cotton and Arabidopsis which were used to

infer correspondence in this region. IdentiWers in bold are defense or
stress response genes used to align syntenic regions. The bar on the
right of the linkage group indicates the 90% (1-LOD) likelihood inter-
val and whiskers indicate 99% (2-LOD) likelihood interval
123
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eYcacy of each R-gene and its breeding value in the
tetraploid genome.
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